Polynomials on Graphs with Applications

G. Black

The Ohio State University
June 21, 2024

Weighted Tutte Polynomial

Polynomials
on Graphs with Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Definition 1

For a Graph 「 we define the weighted Tutte polynomial as,

$$
T_{\Gamma}\left(x_{e}, y_{e}, x, y\right)=\sum_{F \subseteq E(\Gamma)}\left(\prod_{e \in F} x_{e}\right)\left(\prod_{e \in E(\Gamma) \backslash F} y_{e}\right)(x-1)^{r(\Gamma)-r(F)}(y-1)^{n(F)}
$$

Le $v(F)$ be the number of verticies of $F, e(F)$ be the number of edges of F, and $k(F)$ be the number of connected components of F. Define $r(F):=v(f)-k(f)$ to be the rank of the graph F and $n(F):=e(F)-r(F)$ to be the nullity of the graph F.

This is a generalization that agrees with the Tutte polynomial when we make the substitution $x_{e}=y_{e}=1$. This definition also has the advantage that for any Ribbon Graph G we can consider its underlying Graph Γ and get by definition

$$
R_{G}\left(x_{e}, y_{e}, x-1, y-1,1\right)=T_{\Gamma}\left(x_{e}, y_{e}, x, y\right)
$$

Signed Tutte polynomial

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
Contraction-
Deletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Definition 2

For a Graph 「 we define the Signed Tutte polynomial obtained by substitiuting

$$
\begin{aligned}
& x_{e}=\left\{\begin{array}{cl}
1 & \text { if } \operatorname{sign}(e)=+ \\
\sqrt{\frac{x-1}{y-1}} & \text { if } \operatorname{sign}(e)=-
\end{array}\right. \\
& y_{e}=\left\{\begin{array}{cl}
1 & \text { if } \operatorname{sign}(e)=+ \\
\sqrt{\frac{y-1}{x-1}} & \text { if } \operatorname{sign}(e)=-
\end{array}\right.
\end{aligned}
$$

into $T_{\Gamma}\left(x_{e}, y_{e}, x, y\right)$ to get the Signed Tutte polynomial $\mathcal{T}_{\Gamma}(x, y)$.

This gives that $R_{G}(x-1, y-1,1)=\mathcal{T}_{\Gamma}(x, y)$ where here $R_{G}(X, Y, Z)$ is the signed Bollobás-Riordan polynomial.

Signed Tait Graph

G. Black

Signed Tutte Polynomial

Example 1
Contraction-
Deletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

For a Checkerboard colorable virtual link diagram D we can assign a sign $\sigma(c)$ to each crossing c of D in the following way:

The sign on the crossings of D induces a sign on the edges Tait Graph. This gives us the Signed Tait graph of a checkerboard colorable virtual link diagram D.

Thistlethwaite's Theorem

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
Contraction-
Deletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Theorem 3 (Thistlethwaite)
Let $L \subset \mathbb{R}^{2}$ be a non-split link diagram and let Γ be a Signed Tait Graph of L then we have that,

$$
\langle L\rangle\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)=t^{\frac{-2 k+2 v-e}{4}} \mathcal{T}_{\Gamma}\left(-t^{-1},-t\right)
$$

where $\langle L\rangle(A, B, d)$ is the Kauffman Bracket of L.

Corollary 4

Let $L \subset \mathbb{R}^{2}$ be a non-split link diagram and let Γ be a Tait Graph of L then we have that,

$$
J_{L}(t)=(-1)^{w(L)} t^{\frac{-2 k+2 v-e+3 w(L)}{4}} \mathcal{T}_{\Gamma}\left(-t^{-1},-t\right)
$$

where $J_{L}(t)$ is the Jones polynomial for the Link L and $w(L)$ is the writhe of L.

Example 1

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
Contraction-
Deletion
Recurrence Relations

Polynomial Invariants

Example 2

Figure: Signed Tait Graph of $4_{1} \mathrm{Knot}$

Polynomials on Graphs with

Example 1
ContractionDeletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3
x_{-}
$x_{-}^{3} y_{-}\left(y_{-1}\right)$

Example 1

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion Recurrence Relations

Polynomial Invariants

Example 2

This Gives,

$$
\begin{gathered}
\mathcal{T}_{\Gamma}(x, y)=x_{-}^{4}(y-1)^{2}+4 x_{-}^{3} y_{-}(y-1)+x_{-}^{2} y_{-}^{2}(5+(x-1)(y-1)) \\
+4 x_{-} y_{-}^{3}(x-1)+y_{-}^{4}(x-1)^{2}
\end{gathered}
$$

Since $-2 k+2 v-e=2-6+4=0$ and $w(K)=0$,

$$
\begin{gathered}
J_{4_{1}}(t)=t^{\frac{-2 k+2 v-e}{4}} \mathcal{T}_{\Gamma}\left(-t^{-1},-t\right)=\mathcal{T}_{\Gamma}\left(-t^{-1},-t\right) \\
=t^{-2}(-t-1)^{2}+4 t^{-1}(-t-1)+5+\left(-t^{-1}-1\right)(-t-1) \\
+4 t\left(-t^{-1}-1\right)+t^{2}\left(-t^{-1}-1\right)^{2} \\
=t^{2}-t+1-t^{-1}+t^{-2}
\end{gathered}
$$

Contraction-Deletion on Graphs

Two of the important operations on Graphs are the contraction and deletion operations. The contraction with respect to an edge e is denoted G / e. The deletion with respect to an edge e is denoted $G-e$.

Figure: Contraction of edges

Figure: Deletion of edges

Alternate Definition For Weighted Tutte
 Polynomial

G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion Recurrence Relations

Polynomial Invariants

Example 2
Example 3

It is often useful to define polynomials on Graphs recursively by Contraction and Deletion Operations to help compute these polynomials.

Definition 5

We can Define the Weighted Tutte Polynomial, $T_{G}\left(x_{e}, y_{e}, x, y\right)$ to be the unique polynomial such that.

$$
\begin{aligned}
& T_{\Gamma}=y_{e} T_{\Gamma-e}+x_{e} T_{\Gamma / e} \\
& T_{\Gamma}=\left(y_{e}(x-1)+x_{e}\right) T_{\Gamma / e} \\
& T_{\Gamma}=\left(y_{e}+(y-1) x_{e}\right) T_{\Gamma-e} \\
& T_{\Gamma_{1 \sqcup \Gamma_{2}}}=T_{\Gamma_{1}} \cdot T_{\Gamma_{2}} \\
& T_{\mathbf{V}}=1
\end{aligned}
$$

Thistlethwaite's Polynomial

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Definition 6

In [TH], Thistlethwaite defined the Laurent polynomial $\tau[\Gamma]$ of
a Graph 「 recursively by;

$$
\begin{array}{ll}
\tau[\Gamma]=A_{e}^{-1} \tau[\Gamma-e]+A_{e} \tau[\Gamma / e] & \text { If } e \text { is not a bridge nor loop; } \\
\tau[\Gamma]=A_{e}^{-3} \tau[\Gamma / e] & \text { If } e \text { is a bridge; } \\
\tau[\Gamma]=A_{e}^{3} \tau[\Gamma-e] & \text { If } e \text { is a loop; } \\
\tau\left[\Gamma_{1} \sqcup \Gamma_{2}\right]=d \tau\left[\Gamma_{1}\right] \tau\left[\Gamma_{2}\right] & \text { For disjoint union } \Gamma_{1} \sqcup \Gamma_{2} ; \\
\tau[\cdot]=1 &
\end{array}
$$

Where $d=-A^{2}-A^{-2}$ and $A_{e}= \begin{cases}A & \text { if } \operatorname{sign}(e)=+ \\ A^{-1} & \text { if } \operatorname{sign}(e)=-\end{cases}$

Connection to Bollobás-Riordan Polynomial

Signed Tutte Polynomial

Example 1
ContractionDeletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

From this definition of Thistlethwaite's polynomial it is not obvious that it is a specialization of the Bollobás-Riordan Polynomial. It is a straightforward verification that for a connected graph 「 we have,

$$
\tau[\Gamma]=A^{2 k-2 v+e} \mathcal{T}_{\Gamma}\left(-A^{4},-A^{-4}\right)
$$

by seeing that both polynomials are defined the same recursively. This means that,

$$
\tau[\Gamma]=A^{2 k-2 v+e} R_{G}\left(-A^{4}-1,-A^{-4}-1,1\right)
$$

One more Polynomial from a Graph

G. Black

Signed Tutte Polynomial

Example 1
Contraction-
Deletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Definition 7

Let D be a checkerboard colorable Virtual link diagram and Γ be the associated Signed Tait Graph then we can define;

$$
\nu_{D, \Gamma}(t)=\left((-A)^{-3 w(D)} \tau[\Gamma]\right)_{A^{-2}=t^{1 / 2}}
$$

It is clear from that this polynomial must be a specialization of the Bollobás-Ribbon polynomial.

A Polynomial Invariant

G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Theorem 8 (Boninger 23')

Let Σ be a closed orientable surface. Let $D \subset \Sigma$ be a checkerboard colorable, non-split link diagram, and $L \subset \Sigma \times I$ the associated link. Let Γ and Γ^{\prime} be the signed Tait graphs associated to the two checkerboard colorings of D. Then,

$$
\left\{\nu_{D, \Gamma}(t), \nu_{D, \Gamma^{\prime}}(t)\right\}
$$

Is an isotopy invariant of L.
Note that from the definition of $\nu_{D, \Gamma}$ we can see that Thistlethwaite's theorem implies that for classical links we have $\nu_{D, \Gamma}=\nu_{D, \Gamma^{\prime}}=J_{D}(t)$

Example 2

Polynomials
on Graphs with Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Let us compute $\tau[\Gamma]$ for the tait graph Γ of 4_{1} we used earlier.

Example 2

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
Contraction-
Deletion
Recurrence
Relations
Polynomial
Invariants
Example 2
Example 3

We can see that from this Contraction-Deletion binary Tree that,

$$
\tau[\Gamma]=A^{-8}-A^{-4}-A^{4}+1+A^{8}
$$

Since we have $w(K)=0$,

$$
\nu_{4_{1}, \Gamma}(t)=t^{2}-t+1-t^{-1}+t^{-2}=J_{4_{1}}(t)
$$

Example 3

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Now let us Compute an example of a Virtual knot.

$$
r=+f^{+}-
$$

Example 3

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte
Polynomial
Example 1
Contraction-
Deletion
Recurrence
Relations
Polynomial Invariants

Example 2
Example 3

It is easy to see that $\tau[\Gamma]=1$, so let us compute $\tau\left[\Gamma^{\prime}\right]$

This Gives $\tau\left[\Gamma^{\prime}\right]=A^{-8}+2+A^{8}$

Example 3

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion
Recurrence Relations

Polynomial Invariants

Example 2
Example 3

Now we have that $w(D)=0$ which means,

$$
\nu_{D, \Gamma}(t)=1
$$

and

$$
\nu_{D, \Gamma^{\prime}}(t)=t^{-2}+2+t^{2}
$$

hence,

$$
S=\left\{1, t^{-2}+2+t^{2}\right\}
$$

Is an isotopy invariant of K. Note that since D is not a planar $J_{D}(t)$ need not be an element of S. This example illustrates that fact because we can compute

$$
J_{D}(t)=t^{2}-t+1-t^{-1}+t^{-2} \notin S
$$

References

Polynomials
on Graphs with
Applications
G. Black

Signed Tutte Polynomial

Example 1
ContractionDeletion Recurrence Relations

Polynomial Invariants

CH S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordian polynimial, Journal of Combinatorial Theory, Ser. B 99(3) (2009) 617-638; preprint arXiv:math.C0/0711.3490.
TH Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297-309
BO Boninger, J. (2022). The Jones Polynomial from a Goeritz Matrix. Bulletin of the London Mathematical Society, 55(2), 732-755. https://doi.org/10.1112/blms. 12753
KA L.H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1989) 105-127.

