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Weighted Tutte Polynomial

Definition 1

For a Graph Γ we define the weighted Tutte polynomial as,

TΓpxe , ye , x , yq “
ÿ

FĎEpΓq

ˆ

ź

ePF

xe

˙

p
ź

ePEpΓqzF

ye

˙

px ´ 1q
rpΓq´rpFq

py ´ 1q
npFq

Le vpF q be the number of verticies of F , epF q be the number of
edges of F , and kpF q be the number of connected components
of F . Define rpF q :“ vpf q ´ kpf q to be the rank of the graph
F and npF q :“ epF q ´ rpF q to be the nullity of the graph F .

This is a generalization that agrees with the Tutte polynomial
when we make the substitution xe “ ye “ 1. This definition
also has the advantage that for any Ribbon Graph G we can
consider its underlying Graph Γ and get by definition

RG pxe , ye , x ´ 1, y ´ 1, 1q “ TΓpxe , ye , x , yq
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Signed Tutte polynomial

Definition 2

For a Graph Γ we define the Signed Tutte polynomial obtained
by substitiuting

xe “

#

1 if signpeq “ `
b

x´1
y´1 if signpeq “ ´

ye “

#

1 if signpeq “ `
b

y´1
x´1 if signpeq “ ´

into TΓpxe , ye , x , yq to get the Signed Tutte polynomial
TΓpx , yq.

This gives that RG px ´ 1, y ´ 1, 1q “ TΓpx , yq where here
RG pX ,Y ,Z q is the signed Bollobás-Riordan polynomial.
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Signed Tait Graph

For a Checkerboard colorable virtual link diagram D we can
assign a sign σpcq to each crossing c of D in the following way:

The sign on the crossings of D induces a sign on the edges Tait
Graph. This gives us the Signed Tait graph of a checkerboard
colorable virtual link diagram D.
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Thistlethwaite’s Theorem

Theorem 3 (Thistlethwaite)

Let L Ă R2 be a non-split link diagram and let Γ be a Signed
Tait Graph of L then we have that,

xLypt´1{4, t1{4,´t1{2 ´ t´1{2q “ t
´2k`2v´e

4 TΓp´t´1,´tq

where xLypA,B, dq is the Kauffman Bracket of L.

Corollary 4

Let L Ă R2 be a non-split link diagram and let Γ be a Tait
Graph of L then we have that,

JLptq “ p´1qwpLqt
´2k`2v´e`3wpLq

4 TΓp´t´1,´tq

where JLptq is the Jones polynomial for the Link L and wpLq is
the writhe of L.
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Figure: Signed Tait Graph of 41 Knot
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Example 1

This Gives,

TΓpx , yq “ x4´py ´1q2`4x3´y´py ´1q`x2´y
2
´p5`px´1qpy ´1qq

`4x´y
3
´px ´ 1q ` y4´px ´ 1q2

Since ´2k ` 2v ´ e “ 2 ´ 6 ` 4 “ 0 and wpK q “ 0,

J41ptq “ t
´2k`2v´e

4 TΓp´t´1,´tq “ TΓp´t´1,´tq

“ t´2p´t ´ 1q2 ` 4t´1p´t ´ 1q ` 5 ` p´t´1 ´ 1qp´t ´ 1q

`4tp´t´1 ´ 1q ` t2p´t´1 ´ 1q2

“ t2 ´ t ` 1 ´ t´1 ` t´2
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Contraction-Deletion on Graphs

Two of the important operations on Graphs are the contraction
and deletion operations. The contraction with respect to an
edge e is denoted G{e. The deletion with respect to an edge e
is denoted G ´ e.

Figure: Contraction of edges Figure: Deletion of edges
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Alternate Definition For Weighted Tutte
Polynomial

It is often useful to define polynomials on Graphs recursively by
Contraction and Deletion Operations to help compute these
polynomials.

Definition 5

We can Define the Weighted Tutte Polynomial, TG pxe , ye , x , yq

to be the unique polynomial such that.

TΓ “ yeTΓ´e ` xeTΓ{e If e is not a bridge nor loop;
TΓ “ pyepx ´ 1q ` xeqTΓ{e If e is a bridge;
TΓ “ pye ` py ´ 1qxeqTΓ´e If e is a loop;
TΓ1\Γ2 “ TΓ1 ¨ TΓ2 For disjoint union Γ1 \ Γ2;
T‚ “ 1
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Thistlethwaite’s Polynomial

Definition 6

In [TH], Thistlethwaite defined the Laurent polynomial τ rΓs of
a Graph Γ recursively by;
τ rΓs “ A´1

e τ rΓ ´ es ` Aeτ rΓ{es If e is not a bridge nor loop;
τ rΓs “ A´3

e τ rΓ{es If e is a bridge;
τ rΓs “ A3

eτ rΓ ´ es If e is a loop;
τ rΓ1 \ Γ2s “ dτ rΓ1sτ rΓ2s For disjoint union Γ1 \ Γ2;
τ r‚s “ 1

Where d “ ´A2 ´ A´2 and Ae “

#

A if signpeq “ `

A´1 if signpeq “ ´
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Connection to Bollobás-Riordan Polynomial

From this definition of Thistlethwaite’s polynomial it is not
obvious that it is a specialization of the Bollobás-Riordan
Polynomial. It is a straightforward verification that for a
connected graph Γ we have,

τ rΓs “ A2k´2v`eTΓp´A4,´A´4q

by seeing that both polynomials are defined the same
recursively. This means that,

τ rΓs “ A2k´2v`eRG p´A4 ´ 1,´A´4 ´ 1, 1q
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One more Polynomial from a Graph

Definition 7

Let D be a checkerboard colorable Virtual link diagram and Γ
be the associated Signed Tait Graph then we can define;

νD,Γptq “

ˆ

p´Aq´3wpDqτ rΓs

˙

A´2“t1{2

It is clear from that this polynomial must be a specialization of
the Bollobás-Ribbon polynomial.
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A Polynomial Invariant

Theorem 8 (Boninger 23’)

Let Σ be a closed orientable surface. Let D Ă Σ be a
checkerboard colorable, non-split link diagram, and L Ă Σ ˆ I
the associated link. Let Γ and Γ1 be the signed Tait graphs
associated to the two checkerboard colorings of D. Then,

tνD,Γptq, νD,Γ1ptqu

Is an isotopy invariant of L.

Note that from the definition of νD,Γ we can see that
Thistlethwaite’s theorem implies that for classical links we have
νD,Γ “ νD,Γ1 “ JDptq
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Let us compute τ rΓs for the tait graph Γ of 41 we used earlier.
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We can see that from this Contraction-Deletion binary Tree
that,

τ rΓs “ A´8 ´ A´4 ´ A4 ` 1 ` A8

Since we have wpK q “ 0,

ν41,Γptq “ t2 ´ t ` 1 ´ t´1 ` t´2 “ J41ptq
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Now let us Compute an example of a Virtual knot.
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It is easy to see that τ rΓs “ 1, so let us compute τ rΓ1s

This Gives τ rΓ1s “ A´8 ` 2 ` A8
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Now we have that wpDq “ 0 which means,

νD,Γptq “ 1

and
νD,Γ1ptq “ t´2 ` 2 ` t2

hence,
S “ t1, t´2 ` 2 ` t2u

Is an isotopy invariant of K . Note that since D is not a planar
JDptq need not be an element of S . This example illustrates
that fact because we can compute

JDptq “ t2 ´ t ` 1 ´ t´1 ` t´2 R S
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